What does it mean to be "nearsighted?"

Anatomical diagram illustrating myopia, or nearsightedness

Anatomical diagram illustrating myopia, or nearsightedness

First of all, myopia, or nearsightedness, means that relatively speaking, you see things better up close than far away. This is easy to remember, because the term "nearsightedness" suggests that you are best "sighted" at "near."

Take a look at the drawing here, of a myopic eye. Ideally, the cornea and lens at the front of the eye (left side of the drawing) should focus the light rays, from the image the eye is trying to see, right on the retina, at the back of the eye (right side). But look at this eye -- the image is focused in front of the retina. Nearsightedness! The eye is either too strong in its focusing ability or too long for its focal power.

So how can this be corrected? One way is by moving the object you look at closer to your eye. Why does this work? Simple optics. As the distance from the object to your eye decreases, the distance from the front of the eye to the image created by the eye increases -- the focal plane "moves backward." This means that instead of being focused in front of the retina, the image will be in focus farther back -- ideally, right on the retina. The more nearsighted you are, the closer this distance between the object you are looking at and your eye will need to be for you to see best.

OK, Dr. Weed, holding things close might work for books and whatnot, but it's not so great for sporting events, oncoming cars, other humans, etc. How else can nearsightedness be corrected? There are a variety of medical and surgical options. By wearing corrective lenses -- eyeglasses or contact lenses -- that "push the image back," so to speak, the eye can then focus images on its retina. Alternatively, a variety of surgical options, most commonly laser vision correction (e.g. LASIK), can be pursued.

Why do stars disappear when I look directly at them?

Stars disappear when you look directly at them because of the anatomy of the photoreceptors in your retina.

Stars disappear when you look directly at them because of the anatomy of the photoreceptors in your retina.

We all have two types of light-sensing cells in our eyes, the rods and the cones. Cones see fine detail and color. Rods see better in dim light. When you look right at something that is small or far away, the image falls on a part of your retina where there are only cones. This means that if you're in a well-lit environment, you will see this object very well. If however you are in dim light, you'll see the object better out of your peripheral vision (looking just off to the side of your target) because then the image will fall on the part of your retina that has rods, which can see in dim light. This is true of everyone's eyes, but many people have never noticed it. There are a few VERY rare conditions that can exaggerate this phenomenon, but they are like 1 in 10,000 level rare. A dilated eye exam could detect them.